

L'applicazione delle linee guida casi studio ARPAT

Presentazione LINEE GUIDA per la predisposizione di una rete di monitoraggio delle acque sotterranee in sistemi a media e bassa permeabilità in impianti produttivi e interpretazione preliminare dei dati

Firenze, 9 dicembre 2024

Alberto Doni, Stefano Menichetti

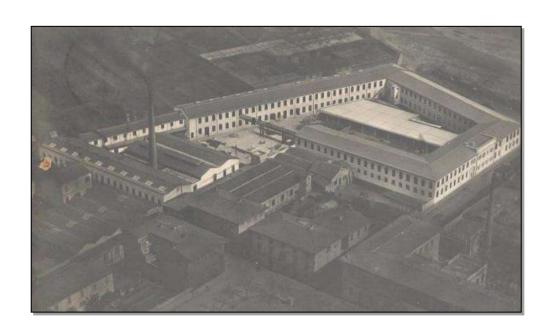
ARPAT

Argomenti

- Distretto industriale di Prato
 - Specificità e ciclo produttivo
 - Impiego del percloroetilene
 - Inquinamento diffuso dell'area
 - Piani di Indagine Aziende AIA ai sensi art. 29 sexies comma 6 bis
 - La rete di monitoraggio MICO
- Casi di studio
 - Monitoraggio in continuo
 - Facies Geochimiche

Distretto industriale pratese

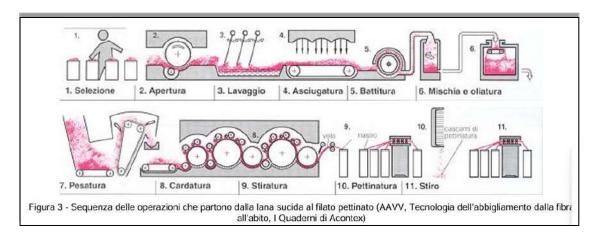
- L'area del Distretto tessile di Prato interessa una superficie di 700 kmq e una popolazione che conta più di 300.000 abitanti
- Include 12 comuni tra le province di
 - Prato (comuni di Prato, Cantagallo, Carmignano, Montemurlo, Poggio a Caiano, Vaiano, Vernio),
 - Pistoia (comuni di Agliana, Montale, Quarrata)
 - Firenze (comuni di Calenzano e Campi Bisenzio)

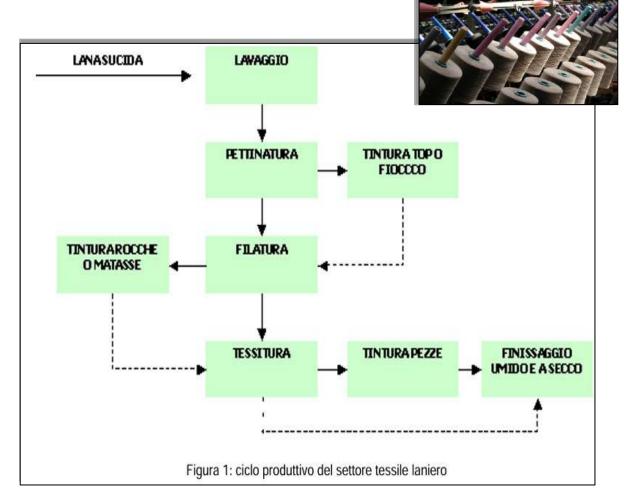


Specificità del contesto pratese

- Area di piana alluvionale (Prato), zone di fondovalle in contesto appenninico (valle del Bisenzio).
- Tessuto urbano misto residenziale/industriale.
- Attività industriale storica ed attuale di tipo tessile: il distretto tessile di Prato è composto da circa 7000 imprese del settore Moda di cui oltre 2000 nel Tessile in senso stretto.

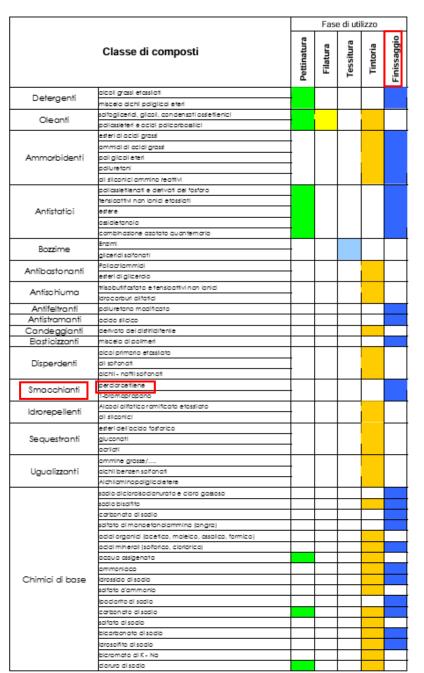
• Caratteristica della industria tessile storica con predominanza di imprese mediopiccole con struttura parcellizzata sul territorio.





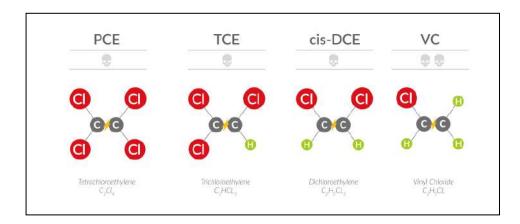
Ciclo produttivo industriale tessile laniero

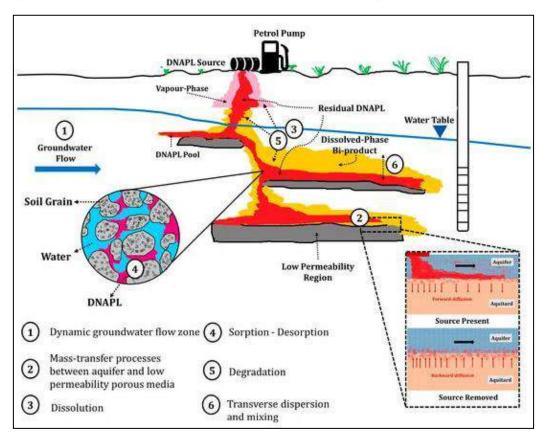
- Il ciclo completo di lavorazione della lana si articola nelle fasi di lavaggio, cardatura e pettinatura, filatura e tessitura e operazioni di nobilitazione che possono comportare impatti ambientali potenzialmente significativi per varie matrici.
- In figura viene illustrato in modo semplificato il ciclo produttivo del tessile laniero.



Il percloroetilene - PCE (tetracloroetilene)

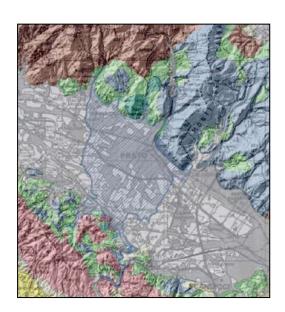
- Si tratta di un solvente utilizzato nel tessile, soprattutto da lavanderie industriali e artigianali ed è presente in maniera diffusa nella falda pratese.
- L'inquinamento delle acque sotterranee è sempre stato segnalato come un problema e ricondotto a diverse cause, tra cui possibili sversamenti.
- Durante il monitoraggio di Arpat (2014), sono state individuate zone in cui l'inquinamento appare più pronunciato.
- Si tratta di un'eredità del passato ma con presenza di fonti di contaminazione tuttora attive.

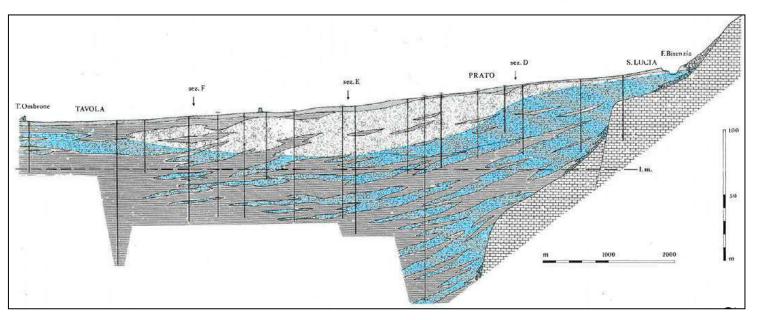




Caratteristiche dei composti organoclorurati (cloroeteni o cloroetileni)

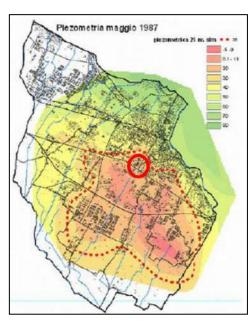
- I parametri analitici ricercati sono Tetracloroetilene, Tricloroetilene, Dicloroetilene e Cloruro di vinile.
- E' nota la catena di degradazione per declorazione riduttiva e possibili indicatori di evoluzione con incremento dei rapporti sono i rapporti DCE/PCE e TCE/PCE
- Nella falda pratese si riscontra principalmente PCE. il comportamento è di tipo DNAPL

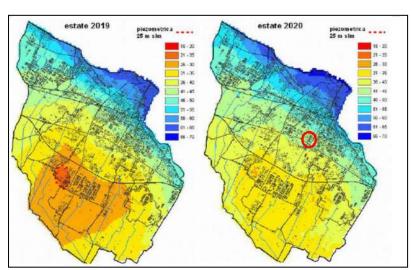




Caratteristiche idrogeologiche dell'area pratese

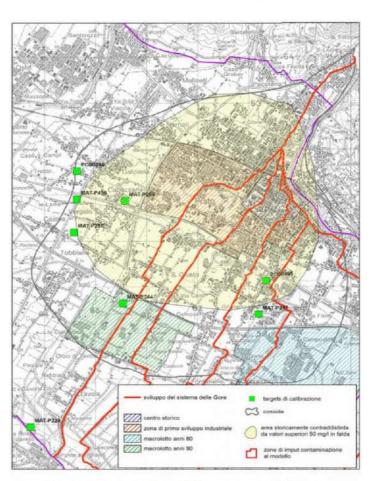
- il sistema acquifero nella parte alta della piana (parte apicale del conoide) è di fatto da ritenersi **freatico** e pressoché **monofalda**
- nella parte **centrale** e **meridionale** dell'area i corpi più permeabili risultano **interdigitati** a termini **a granulometria fine** che favoriscono una ripartizione della circolazione idrica su intervalli di profondità differenti.
- Laddove i vari orizzonti riconosciuti nel sottosuolo risultano ben separati tra loro ad opera di spessi strati di scarsa permeabilità, talvolta la loro connessione idraulica è localmente determinata dalla presenza di pozzi multi fenestrati.





Evoluzione della piezometria nel tempo

- <u>anni 80 e 90</u>: **sovrasfruttamento** con notevole depressione piezometrica e limitata variazione al passaggio fra la magra e la morbida.
- <u>da metà degli anni 2000</u>: incremento della differenza morbida/magra e **riduzione del cono di depression**e.
- <u>anni dal 2007 al 2012</u>: il **cono di depressione diventa sempre meno profondo**, fino a scomparire dal settembre 2009, ricompare solo in occasione della eccezionale siccità del 2012.
- La depressione dovuta al sovrasfruttamento è praticamente sparita. Rimangono delle depressioni localizzate, dovute oltre che ad emungimenti puntuali, a particolari condizioni meteoclimatiche.



Studio La Falda di Prato 2019

Comune di Prato, Autorità Idrica Toscana, Autorità di Distretto dell'Appennino Settentrionale, CNR, Università di Firenze, Publiacqua

piezometria giugno 2011 100.01 - 250.00

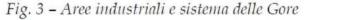


Fig. 8 - condizioni iniziali, mappa delle concentrazioni primavera 2011

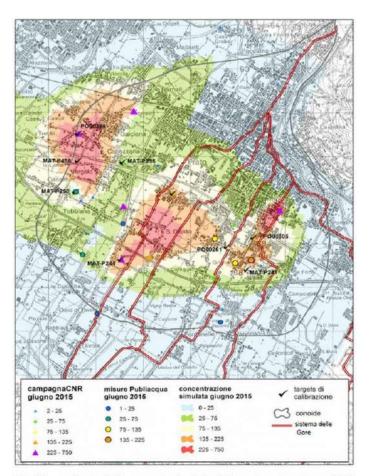
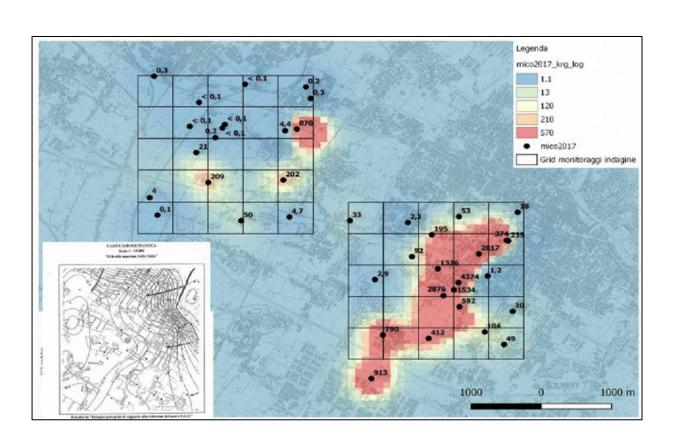
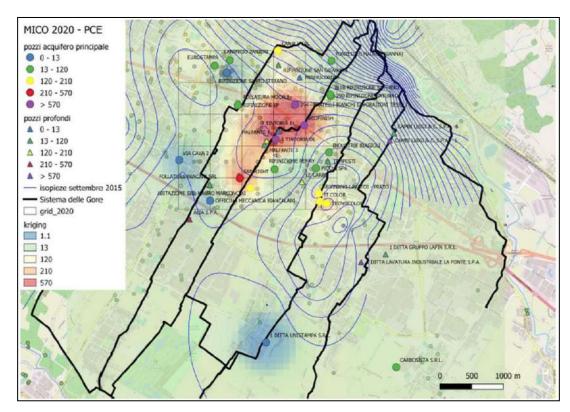


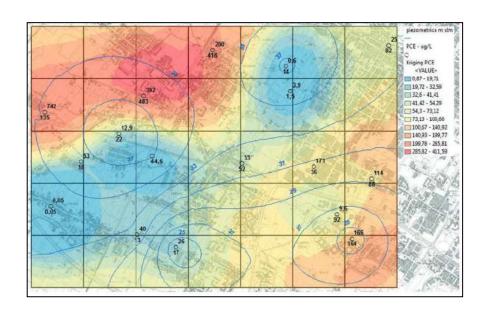
Fig. 10 – confronto fra le concentrazioni simulate e misurate a giugno 2015

Il monitoraggio Arpat


- Monitoraggio ambientale Acque SoTterranee MAT
 - campionamento e analisi di pozzi serie storica dal 2003
 - 8 Stazioni
 - 122 Campioni
- Monitoraggio Indagine Composti Organoalogenati MICO
 - campionamento di pozzi a partire dalla primavera 2016
 - 162 Stazioni
 - 337 Campioni
- Totale campioni: circa 500



Il contributo dei monitoraggio di ARPAT



La gestione dell'inquinamento diffuso

- Nella area pratese si distinguono:
 - zone di origine delle contaminazioni
 - zone «hot spot»
 - Zone marginali plume, PCE> 120
 - aree ad inquinamento diffuso 1,1<PCE< 13

			CI 11AR012 Prato			
			classe	VF PCE µg/L		
CI 11AR01	1 Firenze		A	570		
VF PCE µg/L	classe	Table 1	В	210		
A	97	sorgenti	C	120		
В	41					
С	9,6	fondo antropico	D	13		
D	2,8	John antiopico	U			
E	1,5	000000000000000000000000000000000000000	1981	9191		
F	0,6	non contaminato	/ E	1,1		

Fig. 15 - Results of the study on background values on the two water bodies with the proposal of statistical threshold of anthropogenic background values.

Fig. 15 - Risultati dello studio sui valori di fondo sui due corpi idrici con proposta di soglia statistica del fondo antropico.

Richiesta nell'ambito dei procedimenti AIA di piezometri di controllo

- Data la presenza di estese contaminazioni delle acque sotterranee, Arpat in accordo con il Settore AIA di Regione Toscana, richiede alle ditte AIA la realizzazione di un **Piano di indagine ai sensi art. 29 sexies c.6 bis** con realizzazione di piezometri monte/valle con cadenze da definire in base agli esiti di un primo campionamento e modalità e frequenze del monitoraggio da inserire nel PMC.
- Attualmente vi sono n.**12 ditte** con piezometri monte/valle, n.**27** piezometri totali di profondità fino a 30 m dal p.c..
- Art. 29 sexies, comma 6-bis. Fatto salvo quanto specificato nelle conclusioni sulle BAT applicabili, l'autorizzazione integrata ambientale programma specifici controlli almeno una volta ogni cinque anni per le acque sotterranee e almeno una volta ogni dieci anni per il suolo, a meno che sulla base di una valutazione sistematica del rischio di contaminazione non siano state fissate diverse modalità o più ampie frequenze per tali controlli.

Importanza di una rete di controllo integrata con pozzi che captano livelli più profondi

- Le finalità sono:
 - indagine sulle **sorgenti di PCE** presenti in modo variamente distribuito nel non saturo e/o posizionate alla **sommità di livelli acquicludi**;
 - indagini sulla **connessione** tra **livelli acquiferi** superficiali e profondi su base idrogeologica, chimico/isotopica;
 - ricerca della responsabilità della contaminazione;
 - conferma dei meccanismi di mobilizzazione del PCE da parte delle acque di infiltrazione zenitale e/o per recupero conseguente alla risalita dei livelli piezometrici dell'acquifero freatico superficiale.

Si ringrazia tutto il personale del Dipartimento di Prato che da anni si dedica alle indagini e al monitoraggio della contaminazione delle acque sotterranee

Monitoraggio in continuo

- I Divers sono datalogger subacquei progettati per la misura della pressione dell'acqua, della temperatura e della conduttività costituiti da:
 - sensore di pressione dell'acqua,
 - sensore di temperatura,
 - (sensore di conduttività, sensore barometrico)
 - memoria per l'archiviazione misurazioni
 - batteria.
- I Divers sono completamente sigillati e programmabili in campo via Laptop o altri dispositivi che si basano sulla comunicazione ottica.
 - I Divers per la misura della conduttività hanno un corpo ceramico resistente alla corrosione in acque saline

- Follonica Ex cava di Poggio Speranzona (GR) in recupero ambientale con gessi rossi
 - In data 27 settembre 2021 installato un CTD (diver di conducibilità, livello e temperatura) presso T2, pozzo di 30 metri, che, dal monitoraggio discreto, aveva denunciato incrementi anomali in particolare dei solfati;
 - In data 19 ottobre 2021 su altro pozzo di monitoraggio T3, anche lui di 30 metri, non disturbato, è installato un TD (diver di solo livello e temperatura)
 - L'intervallo di acquisizione inizialmente impostato in T2 per 3h, è stato portato ad 1h a partire dal 19 ottobre.
 - Il monitoraggio al T3 si è concluso il 5 gennaio 2022 mentre quello al T2 è proseguito fino alla data 8 febbraio.
- periodo autunno inverno che coincide con la fine dell'esaurimento estivo ed inizio delle ricariche

Figura 13: Carta geologica e punti di PMC di controllo delle acque sotterranee (LIM calcare Salcifero di Limano, POD marne a Posidonomya, DSA Diaspri, STO1 Argilliti di Brolio).

- La curva cumulata delle precipitazioni è messa al confronto delle registrazioni di livello piezometrico nel pozzo T2.
 - La risalita della piezometria sembra seguire con un ritardo di circa due settimane l'inizio delle precipitazioni.
- Il monitoraggio rivela di conduttività e temperatura presenta la crescita della conduttività nel periodo di ricarica dai 1000 µS/cm della magra estiva ai 6000 µS/cm dei mesi di morbida di gennaio e febbraio.
 - Mentre le temperature descrivono un incremento più regolare sempre da ottobre 2021 a febbraio 2022

Figura 3: temperatura e conduttività monitorate al pozzo T2 di Poggio Speranzona (GR)

Nello stesso periodo in cui si osserva il brusco cambiamento di conduttività e l'incremento dei livelli in T2, il monitoraggio al pozzo T3 rileva, al contrario, il permanere di un trend discendente di esaurimento.

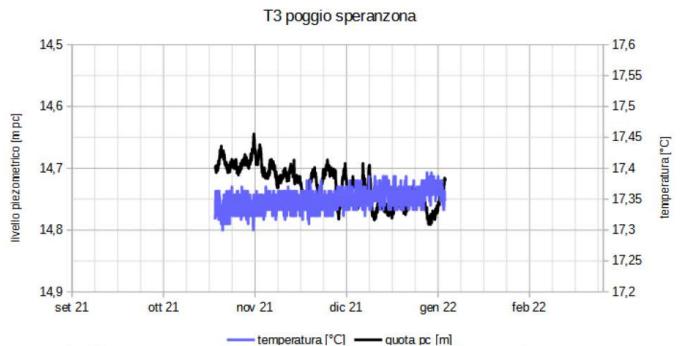


Figura 4: livello piezometrico e temperatura al pozzo T3 nel periodo 19 ottobre 21 5 gennaio 22

- In occasione delle installazioni e scarico dei dati sono condotti anche profili verticali di conducibilità e temperatura c.d. «log»
 - In data 12 maggio 2022 anche pre e post spurgo

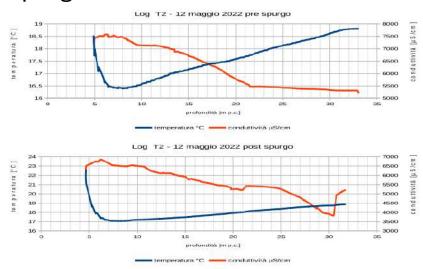
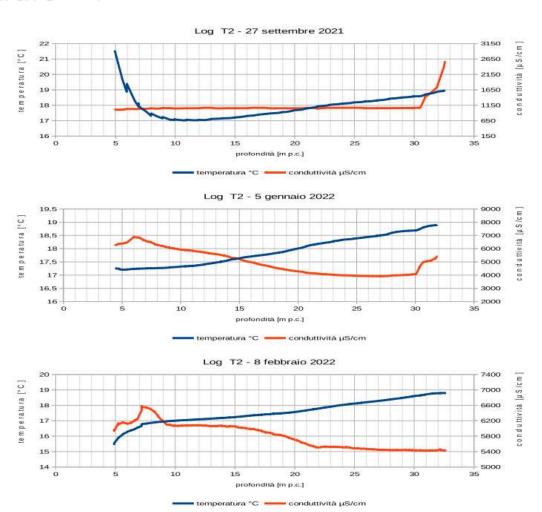
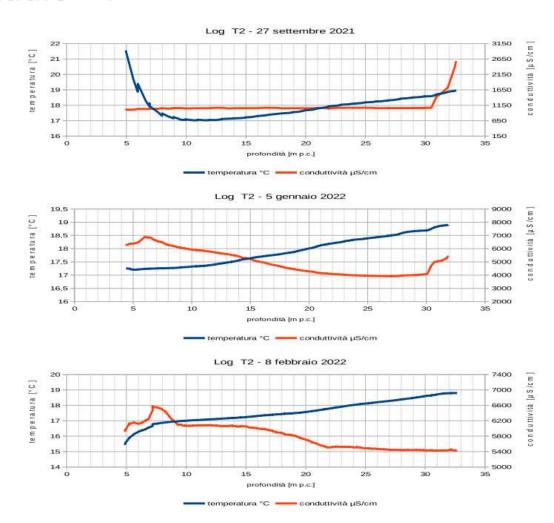



Figura 5: profili di temperatura e conduttività nel pozzo T2



Esame dei profili

- Nel primo log di fine settembre 2021 le conduttività sono basse, nell'ordine del 1000 µS/cm ed all'incirca costanti lungo tutto il profilo.
- Nei log successivi di gennaio e febbraio 2022 le conducibilità sono incrementate e, sono maggiori in alto, tra 5 e 15 m nell'ordine dei 6000 μS/cm piuttosto che in profondità tra 21 e 30 m dove la conduttività si attesta tra 4.000 e5.000 μS/cm.
- In ambedue i profili i valori più alti sembrano relativi ad un massimo distinto nei primi metri della colonna, tra 5 e 8 metri da p.c..

- Si constata la presenza di una stratificazione della colonna d'acqua con possibili diversi contributi anche a carattere stagionale.
 - La presenza di due corpi idrici distinti confermata dal profilo della temperatura che, soprattutto nel profilo di gennaio, segna due tratti circa costanti in coincidenza dei due orizzonti, fino a 12 ca ed oltre 25 metri da p.c.
- Il profilo di maggio 2022, post spurgo, conferma, seppur disturbato, la stratificazione con valori più elevati in alto.

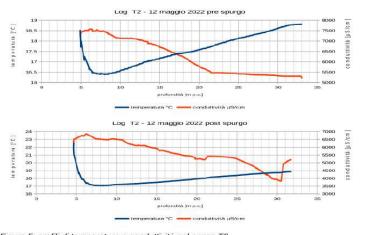
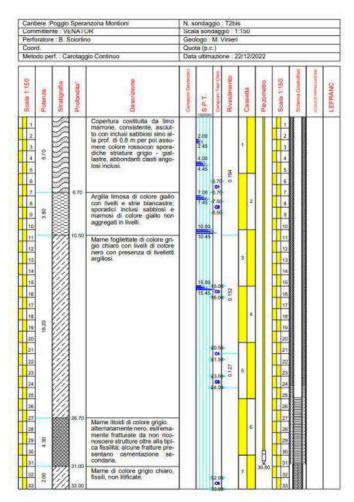


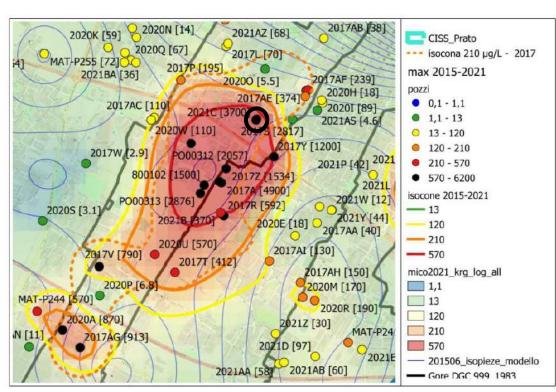
Figura 5: profili di temperatura e conduttività nel pozzo T2

- La videoispezione confermerà la presenza di contributi superficiali con trafilature nei primi metri
- La realizzazione di un cluster di due pozzi con profondità distinte e realizzati a tenuta ha confermato l'esistenza di due corpi idrici distinti:
 - acquifero profondo in marne fratturate
 - acquitardo superficiale nei depositi colluviali dove circolano acque molto più conduttive in parte influenzate dalle acque di dilavamento dei gessi soprastanti

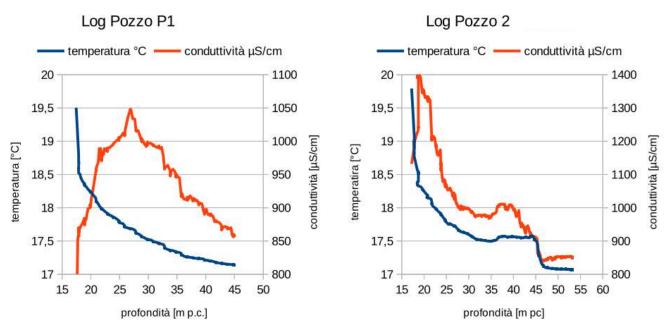
Foto 13: Fotogramma da videoispezione della tubazione di rivestimento del T2 alla profondità di circa 3,5 m dal pc.

Cantiere: Poggio Speranzona Montioni Committente: VENATOR Perforatore: B. Sciortino Coord Metodo perf.: Carotaggio Continuo			N. sondaggio : T5 Scala sondaggio : 1:150 Geologo : M. Vinleri																				
													Quota (p.c.)										
													Data ultimazione : 21/12/2022										
			Scala 1:150	Polenza	Stratgrafia	Profondita*	Descrizione	Campion Grotebies	T d S	Clempon Test Chim.	Rivestmento	Cassetta	Nezometro	South Attend	SCH B 1100	Schema Costulino.	Palda	LECDANIC					
			1		8	5.00	Copertura costituita da argilla e limo di colore rosso con pre- senza diffusa di Ivoli variocio- ri ed inclusi sabbiost, media- mente consistente. Argilla limosa di colore giallo con stre e livelli di colore		G1 01			П	I	1	П								
2		10										2											
3	88	1							3		П	3											
Ž		1							ш	Ħ	Ť	H	3.90										
		10			₹.00						+	4	Ш	3.80									
5			-	5	5.00			0.152			5	5											
6		They have						0	П	Ш		6											
7				bianco, consistente, asciutta					П			7											
8	4 70		9.76 10.00	livelli sabbiosi e piccoli clasti di colore giallo. Mame di colore grigio biancastro, consistenti, asciut- te			-0.00		2			8		80000000									
9												9											
1.23	-				V.		Ca			1 [0.5		1									

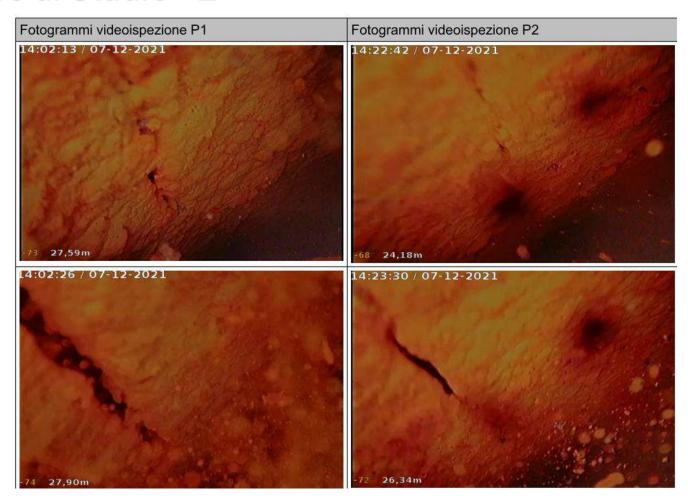



Figura 17: stratigrafia e schema costruttivo pozzo T2bis

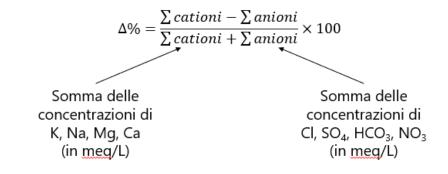
- PRATO Monitoraggio dell'inquinamento diffuso da organoalogenati
 - Campagne di monitoraggio d'indagine che delineano un pennacchio ben sviluppato
 - Nella porzione apicale sono chiesti approfondimenti ad un azienda i cui pozzi profondi esistenti P1 e P2 sono tra i più contaminati
 - Eseguiti due log per verificare la presenza di possibili fenestrature o lesioni più superficiali

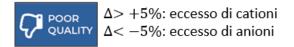


- I risultati dei log presentano distinte anomalie di conduttività sia superficiali e positive (acque contaminate?), alle profondità di 25 – 30 metri in P1 e 20 - 25 in P2, sia profonde e negative (acquifero trasmissivo), tra 35 e 40 e tra 45 e 50 nella più completa prova su P2.
 - In quest'ultima sembrano inoltre intravedersi, in profondità, i livelli più trasmissivi caratterizzati da una relativa invariabilità della temperatura



- Le videoispezioni confermeranno la presenza di filtri già a partire dai 27 metri ed un pessimo stato della colonna di rivestimento del pozzo;
- I piezometri poi realizzati, A3 ed A7, a più modesta profondità 25 metri risulteranno estremamente contaminati

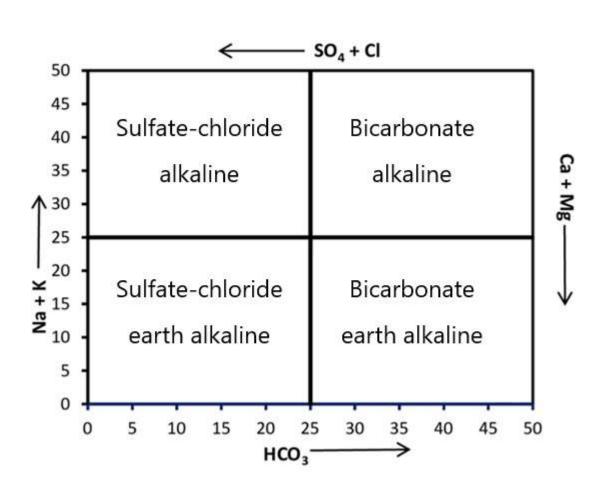


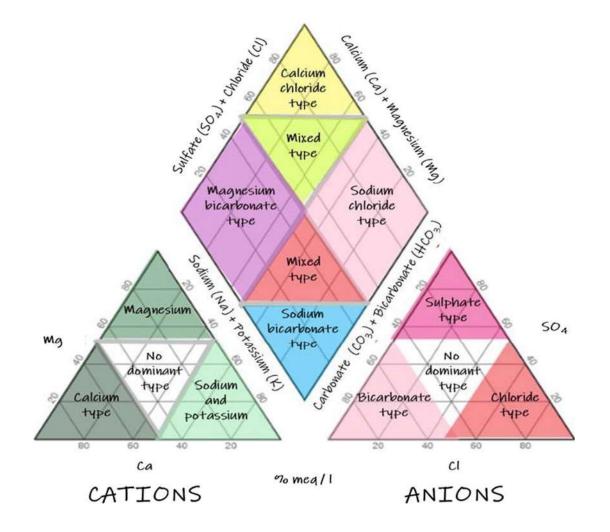


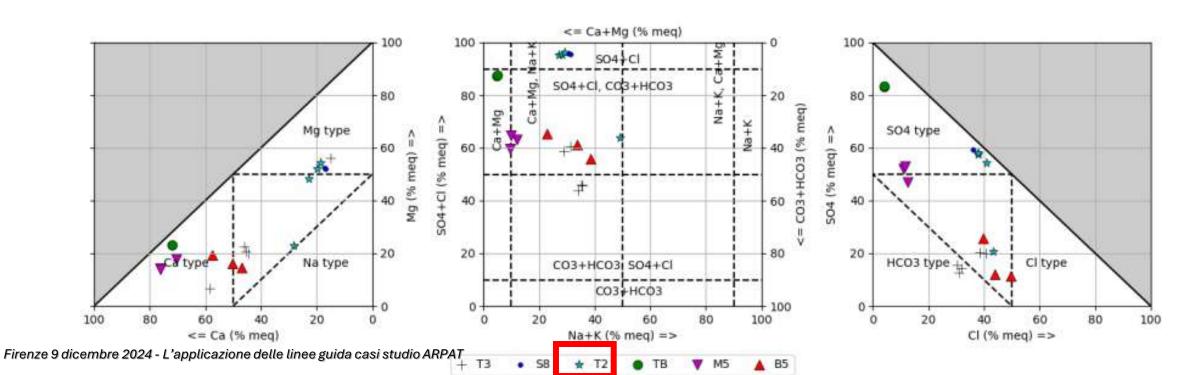
Componenti disciolti maggiori e minori per una caratterizzazione geochimica minima del campione:

Bilancio ionico: fondamentale per capire se l'analisi delle specie principali è stata fatta correttamente.

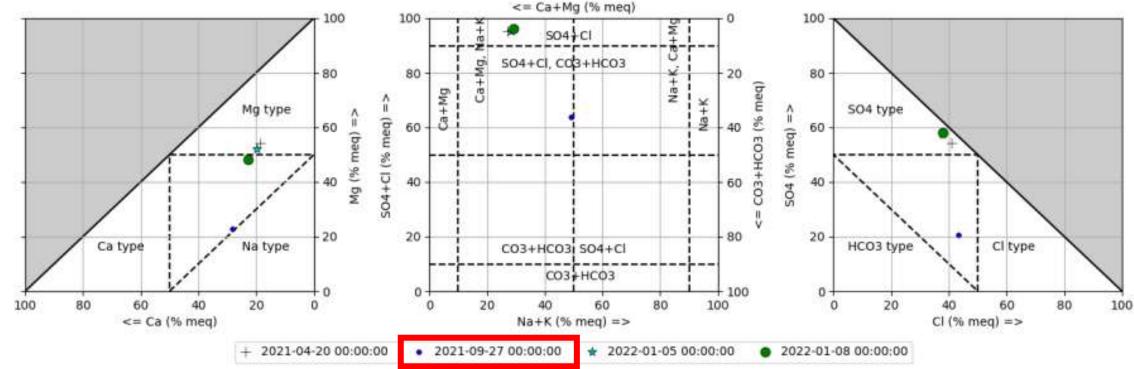
- ✓ Aliquota tal quale
- ✓ Aliquota filtrata ed acidificata (pH<2)
 </p>

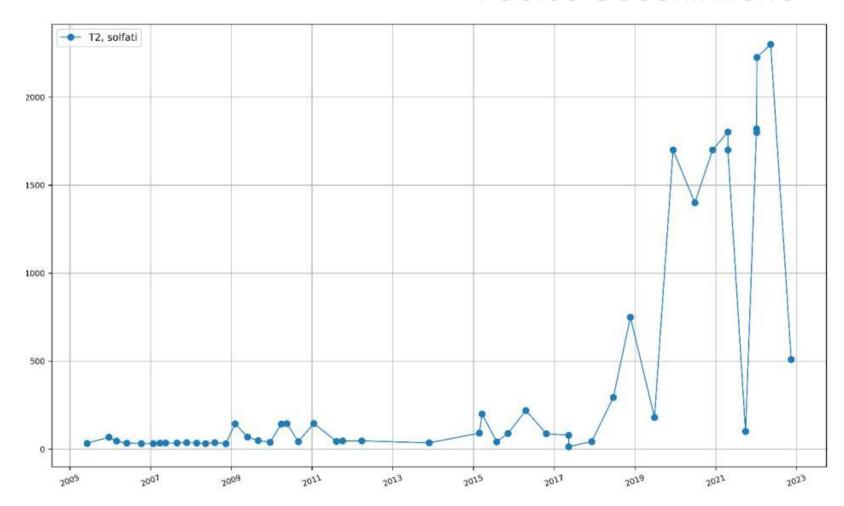

- * Titolazione acidimetrica
- ° Cromatografia ionica
- Spettrofotometria





- Follonica Ex cava di Poggio Speranzona (GR) in recupero ambientale con gessi rossi
 - Facies geochimiche dei punti del PMeC
 - Comportamento anomalo del T2




- Variazione temporale delle facies geochimiche al pozzo T2
 - Campione anomalo di magra

- Il valore anomalo di fine settembre 2021 corrisponde alla condizione che era normale fino al 2019
 - In seguito forti
 variazioni con
 incremento di solfati in
 morbida e diminuzione
 in magra
 - Anomalie stagionali
 - Importanza del monitoraggio in continuo

Grazie dell'attenzione